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Abstract: - This paper is devoted to Hy-optimization of linear time invariant (LTI) systems with scalar controls
and external disturbances. It is supposed that the intensities of control actions are not given initially for all
channels of control. In conformity, a joined problem of H,-optimal synthesis is posed including allocation of
control actions. To solve this problem, a specific spectral approach in frequency domain is developed based on
polynomial factorization. Some theoretical details are discussed and numerical algorithm is proposed for
practical implementation of this approach, which allows to increase a computational efficiency of synthesis.
Applicability and effectiveness of the proposed approach are illustrated by numerical example.
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1 Introduction

Various problems of feedback control analytical
synthesis for LTI systems often arise nowadays both
in theoretical researches and in theirs practical
applications. It is quite suitable to use optimization
approach for these problems solution to provide
high effectiveness of the controllers to be designed.
Note that numerical methods of optimization could
be excellently realized using modern computer
technologies. This makes possible to automatize
time-consuming processes of control systems design
and simulation. It is very significant to reduce
computational consumption for controllers design in
case of real time onboard adaptive tuning for
autonomous moving plants.

Nevertheless, application of  well-known
methods of optimal synthesis can be ineffective
because of limited processing powers of onboard
computers. Thereby design algorithms should be
developed to minimize computational complexity of
their practical implementation.

Problems of mean-squire optimization [1-8],
taking into account presence of external random
actions to the plant, occupy a special position in the
H-theory of analytical synthesis. These problems are
typical for movement control of marine ships,
affected by the sea surface waves [9-10].
Mathematical model of such disturbance is usually
described as time-invariant Gaussian random
process with prescribed spectral power density. Let
us note that a spectrum of the sea disturbance
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always has dominating frequencies, determined by
mean value of sea surface wave period.

The main problem, which is discussed in this
paper, is the special SISO-problem statement with
simultaneous search of transfer function of the
optimal controller and the vector, characterizing
control action allocation for the channels of control.
The specific spectral approach [5-8] to H,-optimal
control synthesis is used as a background that
simplifies both a research and calculation.

2 The Problem of H,-Synthesis

Let us consider a LTI plant with the mathematical
model of the state space form

X =Ax+bu+hd(t),
y=cx+byu,

1)

where xeE" is the state space vector, y, u and
d are the scalar values: y is the measured variable,

u is the control and d represents an external
disturbance. All components of the matrices A, h, ¢
are given constants, the pair {A,c} is observable.

Vector b and number b, are not specified a priori.

External disturbance d(t) is considered as the

random stationary process with zero mathematical
expectation and with the following spectral density

S¢(8) =S4(0)|,—js =S1(8)S1(=9),
S;(8)=N(S)/T(s).
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where N(s) and T(s) are Hurwitz polynomials.

Let us introduce mean-squire functional, which
is given on motions of the plant (1):

| =Tliirgo%£[y2(t)+k2v2(t)]dt=(y2)+ K2V, (2)

where K is initially given constant, and
v =B(s)u,
B(s) = A(s)c(Is—A) b+ A(s)b, ,
A(s) =det(Is—A).

@)

Let us accept that controller to be designed has tf-
model

u=W()y, (4)

where W(s) is transfer function of the controller,
W(s)=W,(s)/W,(s) and W,(s), W,(s) are
polynomials at that. Let us consider a set Q, of
rational fractions with any degrees, and, in addition,
let introduce the subset Q" < Q:

*:{W eQO:ReSi(W)<_O,}, )
A(8;(W))=0,i=1n,
where

A3(8) = ACHWo(S) = B(SHWi(S), ©)

Ny =degAs(S).

As aresult, Q” is a set of controllers (4), stabilizing
closed-loop system with characteristic polynomial

A4(s), having degree n,.
Note that the functional (2) depends on the
transfer ~ function W(s) and the vector

B:(bTiby)T e E™ for the closed-loop system
(1), (4). This allows to pose the following

minimization mean-square (or H, [6]) problem with
requirement of the closed-loop system stability:

I=I(W,p)—> min
WeQ", peE™?

(1)

Let us notice, that unlike the classical theory of the
mean-square optimization, problem (7) requires to

compute not only transfer function W(s) of the
controller, but also the vector B, characterizing

allocation of the control action effectiveness with
respect to the state space equations or the channels
of control.
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3 Transition to Equivalent problem

To simplify the solution of the problem (7), let us
provide its transformation to certain equivalent
form. First of all, let us transform the model (1) of
the pla(rit) to the input-output representation

A(S)y =B(s)u+ P(s)d,
Pcs) = Acsyccls— Ay *h.

(8)
(9)

Now we stress that the freedom with allocation of
the control action u for the model (8) is determined
by the fact that polynomial B(s), having a degree

m=degB(s)<n, (20)

is not fixed a priori. In accordance with (3), the
value of functional (2) is uniquely defined by
selection both this polynomial and the transfer
function W(s) of the controller (4). Then the

problem (7) can be transformed to the following
equivalent form

I=1W,B)—> min

WeQ", B(p)eQ,

: (11)

where Q, is the set of polynomials B(s), satisfying
(10).
Now we shall consider the problem (11) for the
closed-loop system (8), (4) with the functional (2),
which is equivalent to the initial one.

Let us introduce the following additional
designations:

min
WeQ, B(p)eQ,

lo = 1(Wy, By), Wo(S) =Wpi($) Migo(S).

Let us also introduce an auxiliary closed-loop
control system, involving the plant with the model

A(S)y=v+P(s)d, (13)

{Wp, By} =arg I(W,B),

(12)

and the controller

v=V(s)y, (14)
where v e E' is a new scalar control action. All the
rest variables and parameters of the system (13),
(14) are the same as for the system (4), (8).

Now let us consider the functional (2), which is
given on the motions of the closed-loop system (13),
(14), and note that its value depends only on the
transfer function V(s) in (14). This case allows us

to pose the following mean-square synthesis
problem

I =1(V)— min; (15)
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for its solution we shall use the new notations

Vo =argmin I(V), 1o, =1V,
VeQ
Vo (8) =Vou () N2 () -

The following statement is valid with respect to the
problems (11) and (15):

Theorem 1: The problem (11) of the functional (2)
minimization for the closed-loop system (8), (4) is
equivalent to the problem (15) of the same
functional minimization for the closed-loop system
(13), (14) in the sense that

V, () = By ($W,(5), Ig, =1,

(16)

(17

Proof: Let us suppose that the solution (12) of the
problem (11) has already been obtained by any way.

The characteristic polynomial
Aq(8) = A(SWo, (8) = Bo(s)Wgy(s),  (18)

of the closed-loop connection (8), (4) is Hurwitz,
and the functional (2) attains the minimum value

[ Wo, (j)I? + KBy (joWoy (j))? |

IO:

o—38

(19)
X P(j_a)) 2Sd(a))da).
Ay(Jo)
Let us form an auxiliary controller
v=V(s)y, (20)

where V" (s) = By (S)W,(s), and implement this one

to close the plant (13). Characteristic polynomial of
the closed-loop system (13), (20) obviously
coincides with  (18), whence it follows,

that V" (s) e Q". Also the controller (20) provides
the value (19) of the functional (2), which means
that 1" =1(V")=1,. Let us show that 1" =1,

using proof by contradiction.
Really, let us suppose that there exists such a

controller v=\7(s)y with the transfer function
V =V, /V, that V(s)eQ" for the plant (13), and
T =1(V)<I"=1,. At that, let us represent V;(s)
in the form V,(s) = B(s)V,(s), where polynomial
I§(s) satisfies the condition deg §(S) <n and
consider the controller

u=W(s)y, W(s)=Vy(s)/Vp(s).  (21)
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Therefore, we have 1(W,B)< I, for the closed-loop
system (8), (21), i.e. the pair {W,B} provides better
result than the pair {W,,B,} , but this is impossible.

proven  that Iy,

V(s) EVO*(S). Consequently, the solution (12) of
the problem (11) coincides with the solution of the
problem (15).

On the contrary, let us suppose that the solution
(16) of the problem (15) is computed. Then let us
make by any way the presentation

Hence it s " =1, =

Vo (8) = B(5)Vy(5), (22)

so that deg B_( s) < n, and construct the controller

u=W(s), W(s)=Vp(s)Nop(s) .

Similarly to the previous case, we can show, that
the pair {W,B} is optimal solution of the problem
(11), providing the minimal value 1, =1, of the

closed-loop system (8), (23). Hence, the proof is
completed. m

(23)

4 Spectral Approach to Synthesis

So than the problem (11) of the optimal control
synthesis may be reduced to the equivalent standard
one (15), as it follows from the theorem 1.

This can be interpreted as the partial case of H,
optimal synthesis problem, which can be solved by
using a lot of various methods: for example, such as
"2-Riccati " approach or LMI technique. However,
there are serious troubles, remarked in the papers [5-
8], related with the singularity of this problem in the
context of H-theory.

As is shown in the paper [6], overcoming of
these difficulties can be provided by the
implementation of the special spectral approach,
which is presented in detailes in the papers [5-8]. In
accordance with this approach, the unique solution
of the problem (15) is determined by the following
transfer function of the optimal controller (14):

[ACST(S)R(S) + P (S)N(9)]/G(-5)

. (24)
[T(s)R(s) —k2A(= )P, (s)N(8)]/ G(-5)

Vo(s) =

Hurwitz polynomials G(s) and P,(s) are the
results of the factorizations

k2A(S)A(=s)+1=G(s)G(-5),

(25)
P(s)P(=5) =R (s)R(-9),

and R(s) is the following auxiliary polynomial:
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R(S):ZHZG(—S) S1(9;)P(g;) (26)

g; —s A(9))G'(-g;) '

i=1

Here G'(-g;) =dG(-s)/dsl_,, g (i=1n) are
the roots of the polynomial G(-s) (for simplicity it

is assumed that all the roots are distinct). Divisions
to the polynomial G(-s) in (24) are realized totally

(without a remainder). Spectral presentation (24) of
the solution allows formulating the following
statements:

Theorem 2: The transfer function V,(s) (16) of the

optimal controller (14) always can be presented as
Vo (S) = By ()W (9), (27)
where B,(s) is a polynomial of degree n, and

W, (5) =Wy, (S)/Wy,(s) is a proper rational
fraction, i.e.

degB,(s)=n, degWy,(s) <degWy,(s). (28)

Proof: Let us represent the transfer function (24) as

Voir(S)
Vo(s) = =
° Vo2 ($)
4 (29)
_ V8" + U, SH T+ VS Y
8,8 8, 48 L 485 +8
and use notations p=degN¢s), q=degT(s),

r =deg P(s) to express degrees of the polynomials
Vi (S), Vg(s). Taking into account that
degG(s) =n and degR(s) =n-1, we derive from
the formula (24):
p=max{n+q+n-1 p+r}—-n,
v=max{n+gq-1 p+n+r}—n.

Sofaras p<q and r <n, we have

pu=n+q-1, v=max{q-1, p+r}—n. (30)

Let us remark that decreasing of the polynomial
Vi, (s) degree in comparison with (30) is
impossible; but as for polynomial Vg, (s), it is
possible if and only if p+r=q-1. Nevertheless,

this is only a partial situation for the concrete

value k, and we suppose that this is not the case.
We can state on the base of (30) that the

numerator V, in (29) always can be presented as a

product of two polynomials:
V51($) = By $H)Wp($), deg By s) =n,

(31)
degWo,(s) =q-1.
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At the same time, it is true that degVy,(s) =q-1 or
degVg () =p+r>q-1. Hence, accepting
Wy (8) =W, (8)/Wo,(s), where Wo,(s)=Vp,(s),
we arrive to the statement of theorem. m

Theorem 2 determines a solution of the initial
problem (7) for the plant (1) and for the controller

(4).
Theorem 3: Let us suppose that the optimal transfer
function V,(s) (16) for the problem (15) has been

computed, taking into account its presentation (27).
Then the solution

W g t=arg min
We

) ,l}EEMl

I(W,B), (32)

of the problem (7) is determined by the transfer
function W*(S)EWO(S) and, also, by the vector

* T 1\ . . .
] =(b :by) , Where b is a solution of the
linear algebraic system
Cb=by -ba,. (33)

Here the matrix

Cin-1y  Cornay Chin-1)
Cyn-2) Can-2) Chin-2)
C, =
Ci Ca Cn1
Cio Ca0 Cno

consists of coefficients of the polynomials
n-1 n-2
Ci(8) =Cin1yS  +CinS ~ +...
..+ CyS+Cp, i=1n,

and the vectors by, = (001, Bon_z) -+ Bor Boo)'

a,=(a,, a,, ... a a,) are determined by the
coefficients of the polynomials
By (S) =1,S" + by 1,S" " +bgen 25" + ...

e+ DS+ by,

n-2
+...+aS+ay,

As)=s"+a,,s" " +a, ,s
respectively, and b) =b,, .
Proof: the controller (4) with the transfer function
W =W, characterizes a solution of the problem
(11) for the plant (8) simultaneously with the
polynomial B,(s), in accordance to the Theorems 1,

2. Nevertheless, as it was mentioned above, the
problem (11) is equivalent to the problem (7), i.e. its
solution is the controller (3) simultaneously with the
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vector
p=0b" |

A(s)C(Is — A) b+ A(s)b, = By(s) .

b, )" € E™, satisfying the identity
(34)
Introducing the following notation:
C(s)=AGs)e(Is—A) ' =
=(Ci(s) Cy(9) Ch(s)),
let us rewrite the identity (34) as
(Ci(s) C,(s) C,(s)b=B,(s)—A(s)b, .

By equating of the coefficients for the same degrees
of s in the last identity, we obtain the equality

by:b;=b0n and also we obtain the linear

algebraic system (33). Let us remark that a
condition of the pair {A,c} observability provides a

relative primality of the polynomials C,(s), i=1n
that guarantees nonsingularity of the matrix C,, i.e.

there exists the unique solution b =b" of the system
(33). m

5 Algorithm and numerical example
Spectral approach to mean-squire synthesis,
presented by the theorems referred above, is the
base for constructing of a computational algorithm,
which allows to find a solution of control allocation
problem.

Let us accept the matrices A, h, ¢ of the plant
(1), weighting coefficient k, and polynomials
N(s), T(s) as initial data. It is necessary to carry
out the following computations to solve the problem
(7).

1. Compute the polynomials
A(s) =det(Is — A), P(s) = A(s)c(Is — A) *h,
Ci(s), i=1n,where
(Ci(s) Cy(s)

2. Execute factorizations of two polynomials

C,(s)=A)c(s—A) ™",

k2A(S)A(=s)+1=G(s)G(-5),

(35)
P(s)P(—s) =P (s)P(-9),

i.e. compute Hurwitz polynomials G(s) and P,(s).
3. Compute the auxiliary polynomial:

- G(—59) N(g;)P(g;)
R(s) = , 36
© ; gi —S A(9)T(9;)G'(-9;) (30)
E-ISSN: 2224-2856
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where G'(-g;)=dG(-s)/dsl,, g; (i=1n)
are distinct roots of the polynomial G(-s).
4. Construct the auxiliary transfer function

Vo(8) =V (8)Vgo(5), (37)

Vo1 (8) =[A(S)T(S)R(S) + P.(S)N(8)]/G(-5),
Vo (8) = [T($)R(5) k> A(= 5)P,(S)N(s)]/ G(~9),

5. Select any n roots &, of the polynomial
Voi(s), take the rest roots & (j=1,p—n) and
generate the polynomials

Bo()=[J(s-¢0.

- (38)
W1 (S) =H(5 -G ).

j=1

Let remark for example that if the value k is large
(i.e. controller has to be designed in the economical
mode of action) then the pair of complex conjugate
roots &; close to +Bj must be roots of the
polynomial W,,(s) to provide demanded frequency

properties of the closed-loop connection.
6. Construct two vectors

bOl bOO )T'

T
a; ay)

bsO z(bO(n—l) bO(n—Z)

as = (an71 an72 e
with the coefficients of two polynomials

- 2
By () = Db, s" + by 48" 4 bon2)8" " +
oot by S+ by,

A(s)=s"+a, ;8" +a, ,8"? +...+a;s+a,,

respectively. Construct the matrix

Cin-1y  Con-p Chin-1)
Cin-2) Con-2 Chin-2)
C, = ,
Cp Ca Cr1
Cio Ca0 Cro

consisting of the coefficients of the polynomials

-1 -2
Ci(8) =CinpyS" +CingS" ~ +...

. +CyS+Cip, 1 =1n.
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7. Set b, =Dy, and compute a solution b = b*
of the linear algebraic system

Csbzbso—b;as. (39)
8. Accept the transfer function of the optimal
controller (3) as W,(s) =Wy, (s)/By(s), where

W, (S) =V, (s), the optimal vector b =b”, and the
optimal value b, =b; .

Let us consider the practical example,
demonstrating applicability and effectiveness of the
proposed algorithm. A marine ship, moving on the
plane with the constant longitudinal speed, can be
presented by the model (1), having the following
matrices

a; a, 0 hy
A=la, a, O0|,h=|h,|,c=(0 0 1). (40)

0 1 0 0
Vector xeE® consists of the following

components: drift angle, angular velocity and yaw
angle. Let a speed of motion is V =10 m/s: then the

components of the matrices (40) are: a;; =—-0.0936,
a,, =0.634, a,, =0.0480, a,, =-0.717,
h, =1.51-10™*, h, =0.00902 . External disturbance

d(t) is scalar, presented as random time invariant

wave process with power spectral
density S, (S) =S5,(5)S;(—S), S;(S)=N(s)/T(9),

where
N(s) = 2 Dga(a? + B?),

2 2 2 (41)
T(S) =s"+2as+a” +p°.

Here B=0.455 is a mean oscillation frequency,
a=0.213 is Dblurriness of the spectrum,

and Dy =1.52-10 is its dispersion. Let us

consequently execute all the steps of proposed
algorithm with value k =10, and receive:
1. Initial polynomials:

A(s) =s®+0.811s? +0.0367s,

P(s) = 0.00903s + 0.000852,

C,(s) =0.0480, C,(s)=s+0.0936,
C,(s) =s? +0.811s +0.0367.

2. Results of the factorization of two

polynomials:

G(s) =10.0s® +12.6s° +5.04s +1,
P,(s) = 0.00903s +0.000852.
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3. The auxiliary polynomial:
R(s) = —0.00194 s + 0.00206 s — 0.000455 .
4. The auxiliary transfer function:

Vo(9) =V01(5)/V02(5),

Vy,(s) = (0.195s +0.234s° + 0.1158% + ...
...+0.0436s +0.00302) - 1072,
Vg, (s) = —(0.126s + 0.0984)-107° .
5. The roots of the polynomial VOl(s) are

¢ =-0.780, &,,=-0.168+0.453j, &, =-0.085.
We use three of them to construct B :

3
Bo$)=]J(s-&n=
i=1
=53 +1.12s% + 0.496s +0.182,
W, (S) =(0.194s + 0.0166) - 10>,
6. The auxiliary vectors and matrix:

b, =(1.12 0.496 0.182)",
a, =(0.811 0.0367 0)",

0 0 1
C,=| O 1 0.811 |.
0.0480 0.0936 0.0367

7. Solution b=b" of the system (39)
b=b"=(3.15 0.211 0.306)".

8. Transfer function of the optimal controller

0.194s + 0.0166

W,(s) =— ,
o(9) 0.126s + 0.0984

with the optimal parameters b=b", b, =b, =1.

Figures 1, 2 represent step and frequency
responses of the closed-loop system, computed for
the optimal controller, designed above.

Figure 3 demonstrates dynamics of the closed-
loop system under the action of the mentioned
random wave disturbance and additional unit
impulse function, effecting on the system from the
750-th to 950-th s. It can be seen that response to
rectangular impulse can be isolated from the time-
invariant oscillations that allows us to state impulse
disturbance for detection of wrecks. The noticed
feature occurs because of the frequency response
value A, (0)=1.6 at zero frequency significantly
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surpasses the value A, (0.455)=0.92 at the central

frequency of the external disturbance.
Step Response

15 ...................................
=
E‘.- 1 ....... B o i i
= 05l ..................................
0 ; : . :
0 a 10 15 20
i, sec

Fig. 1. Step response of the closed-loop system.

Freguency Response d=>y

AY (grad)

@ [1/5)

Fig. 2. Frequency response of the closed-loop
system.

YWaw mixed motion

y(t), grad

X i ;

0 &0 1000 1500

t, sec

Fig. 3. Joined response of the closed-loop system to
the wave and impulse disturbance.

It will be desirable to attempt to increase the
coefficient  k, =k, (k) = A, (0)/A,(0.455) of
elevation by the choice of the factor k in the
functional (2). To realize this attempt, let us
consider the plots of the functions A, (0.455, k)

(magnitude at the central frequency of the
spectrum), k, (k), and T,(k) (peak time of the step

response), which are presented on the Figure 4.
These plots demonstrate that increasing of the
parameter k results to increasing of the
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coefficient k. (1), but the peak time T, (%)

increases too, that is undesirable. In addition, the
large value of k results to decreasing a degree of
stability of the closed-loop system.

Magnitude A\‘(k)

AL grad
oooo =
Fad= D00 —pa
——

T, sec

[ TNy wn]
T T

30

Fig.4. Characteristics of the closed-loop system with
various parameter k.

6 Conclusion

The main object of this paper is to propose novel
approach to mean-square problem with allocation of
the control action for SISO LTI plants. The optimal
controller is presented in the specific spectral form
(24). Application of the proposed approach allows
to construct a simple algorithm of controller
synthesis, which can be used, for example, for
motion control system design in the laboratory
conditions. In addition, it could be applied onboard
in real-time regime for detection of the situations
close to wrecking. Applicability and efficiency of
the proposed designed scheme is illustrated with the
help of the practical example for the moving plant
control. The object of the future research is solution
of the mean-square problem with allocation of the
control action for MIMO (multi-input and multi-
output) plants, maybe taking into account control
delays and robust features.
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