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Abstract: - This paper is devoted to H2-optimization of linear time invariant (LTI) systems with scalar controls 
and external disturbances. It is supposed that the intensities of control actions are not given initially for all 
channels of control. In conformity, a joined problem of H2-optimal synthesis is posed including allocation of 
control actions. To solve this problem, a specific spectral approach in frequency domain is developed based on 
polynomial factorization. Some theoretical details are discussed and numerical algorithm is proposed for 
practical implementation of this approach, which allows to increase a computational efficiency of synthesis. 
Applicability and effectiveness of the proposed approach are illustrated by numerical example. 
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1 Introduction 
Various problems of feedback control analytical 
synthesis for LTI systems often arise nowadays both 
in theoretical researches and in theirs practical 
applications. It is quite suitable to use optimization 
approach for these problems solution to provide 
high effectiveness of the controllers to be designed. 
Note that numerical methods of optimization could 
be excellently realized using modern computer 
technologies. This makes possible to automatize 
time-consuming processes of control systems design 
and simulation. It is very significant to reduce 
computational consumption for controllers design in 
case of real time onboard adaptive tuning for 
autonomous moving plants. 

Nevertheless, application of well-known 
methods of optimal synthesis can be ineffective 
because of limited processing powers of onboard 
computers. Thereby design algorithms should be 
developed to minimize computational complexity of 
their practical implementation. 

Problems of mean-squire optimization [1-8], 
taking into account presence of external random 
actions to the plant, occupy a special position in the 
H-theory of analytical synthesis. These problems are 
typical for movement control of marine ships, 
affected by the sea surface waves [9-10]. 
Mathematical model of such disturbance is usually 
described as time-invariant Gaussian random 
process with prescribed spectral power density. Let 
us note that a spectrum of the sea disturbance 

always has dominating frequencies, determined by 
mean value of sea surface wave period. 

The main problem, which is discussed in this 
paper, is the special SISO-problem statement with 
simultaneous search of transfer function of the 
optimal controller and the vector, characterizing 
control action allocation for the channels of control. 
The specific spectral approach [5-8] to H2-optimal 
control synthesis is used as a background that 
simplifies both a research and calculation. 
 
 
2 The Problem of H2-Synthesis 
Let us consider a LTI plant with the mathematical 
model of the state space form 
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where nE∈x  is the state space vector, uy,   and  
d  are the scalar values: y  is the measured variable, 
u  is the control and d  represents an external 
disturbance. All components of the matrices A, h, c 
are given constants, the pair { }cA,  is observable. 
Vector b and number yb  are not specified a priori. 

External disturbance ( )td  is considered as the 
random stationary process with zero mathematical 
expectation and with the following spectral density 
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where ( )sN  and ( )sT  are Hurwitz polynomials. 
Let us introduce mean–squire functional, which 

is given on motions of the plant (1): 

 [ ] 222

0

222 )()(1lim vkydttvkty
T

I
T

T
+=+= ∫∞→

, (2)  (2)  

where k  is initially given constant, and 
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Let us accept that controller to be designed has tf-
model 

 ( )ysWu = , (4) 

where ( )sW  is transfer function of the controller, 
( ) ( ) ( )sWsWsW 21 /=  and ( )sW1 , ( )sW2  are 

polynomials at that. Let us consider a set 0Ω  of 
rational fractions with any degrees, and, in addition, 
let introduce the subset 0Ω⊂Ω* : 
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where 
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As a result, *Ω  is a set of controllers (4), stabilizing 
closed-loop system with characteristic polynomial 

( )s3∆ , having degree 3n . 
Note that the functional (2) depends on the 

transfer function ( )sW  and the vector 

( ) 1TT +∈= n
y Ebbβ  for the closed-loop system 

(1), (4). This allows to pose the following 
minimization mean-square (or H2 [6]) problem with 
requirement of the closed-loop system stability: 

 ( )
1* ,

min,
+∈Ω∈

→=
nEW

WII
β

β  (7) 

Let us notice, that unlike the classical theory of the 
mean-square optimization, problem (7) requires to 
compute not only transfer function ( )sW  of the 
controller, but also the vector β , characterizing 
allocation of the control action effectiveness with 
respect to the state space equations or the channels 
of control. 
 

3 Transition to Equivalent problem 
To simplify the solution of the problem (7), let us 
provide its transformation to certain equivalent 
form. First of all, let us transform the model (1) of 
the plant to the input-output representation  

 ( ) ( ) ( )dsPusBysA += , (8) 
 ( ) ( ) ( ) hAIc 1−−= ssAsP . (9) 

Now we stress that the freedom with allocation of 
the control action u for the model (8) is determined 
by the fact that polynomial ( )sB , having a degree 

 ( ) nsBm ≤= deg , (10) 

is not fixed a priori. In accordance with (3), the 
value of functional (2) is uniquely defined by 
selection both this polynomial and the transfer 
function ( )sW  of the controller (4). Then the 
problem (7) can be transformed to the following  
equivalent form  

 ( )
( ) bpBW

BWII
Ω∈Ω∈

→=
,*
min, ,  (11) 

where bΩ  is the set of polynomials ( )sB , satisfying 
(10).  
Now we shall consider the problem (11) for the 
closed-loop system (8), (4) with the functional (2), 
which is equivalent to the initial one.   

Let us introduce the following additional 
designations: 
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Let us also introduce an auxiliary closed-loop 
control system, involving the plant with the model  

 ( ) ( )dsPvysA += , (13) 

and the controller 

 ( )ysVv = , (14) 

where 1E∈ν  is a new scalar control action. All the 
rest variables and parameters of the system (13), 
(14) are the same as for the system (4), (8). 

Now let us consider the functional (2), which is 
given on the motions of the closed-loop system (13), 
(14), and note that its value depends only on the 
transfer function ( )sV  in (14). This case allows us 
to pose the following mean-square synthesis 
problem 
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for its solution we shall use the new notations  
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The following statement is valid with respect to the 
problems (11) and (15): 
Theorem 1: The problem (11) of the functional (2) 
minimization for the closed-loop system (8), (4) is 
equivalent to the problem (15) of the same 
functional minimization for the closed-loop system 
(13), (14) in the sense that 

 ( ) ( ) ( )sWsBsV 000 ≡ , 00 II v = . (17) 

Proof: Let us suppose that the solution (12) of the 
problem (11) has already been obtained by any way. 
The characteristic polynomial 

 ( ) ( ) ( ) ( ) ( )sWsBsWsAs 010020 −=∆ , (18) 

of the closed-loop connection (8), (4) is Hurwitz, 
and the functional (2) attains the minimum value 
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Let us form an auxiliary controller 

 ( )ysVv *= , (20) 

where ( ) ( ) ( )sWsBsV 00
* ≡ , and implement this one 

to close the plant (13). Characteristic polynomial of 
the closed-loop system (13), (20) obviously 
coincides with (18), whence it follows, 
that ( ) ** Ω∈sV . Also the controller (20) provides 
the value (19) of the functional (2), which means 
that ( ) 0

** IVII == . Let us show that vII 0
* =  

using proof by contradiction. 
Really, let us suppose that there exists such a 

controller ysVv )(
~

=  with the transfer function 

21
~~~ VVV =  that ( ) *sV~ Ω∈  for the plant (13), and 

( ) 0IIV~II~ * =<= . At that, let us represent ( )sV1
~

 
in the form ( ) ( ) ( )sVsB~sV~ 11 ≡ , where polynomial 

( )sB~  satisfies the condition ( ) nsB ≤
~

deg  and 
consider the controller 

 ( )ysWu ~
= , ( ) ( ) ( )sVsVsW 21

~~
= .  (21) 

Therefore, we have ( ) 0
~

,
~

IBWI <  for the closed-loop 
system (8), (21), i.e. the pair { }B~,W~  provides better 
result than the pair { }00 B,W , but this is impossible. 
Hence it is proven that 00 III v

* == , 
( ) ( )sVsV **

0≡ . Consequently, the solution (12) of 
the problem (11) coincides with the solution of the 
problem (15). 

On the contrary, let us suppose that the solution 
(16) of the problem (15) is computed. Then let us 
make by any way the presentation  

 ( ) ( ) ( )sVsBsV 0101 ≡ ,  (22) 

so that ( ) nsB ≤deg , and construct the controller  

 ( )sWu = , ( ) ( ) ( )sVsVsW 0201= .  (23) 

Similarly to the previous case, we can show, that 
the pair { }B,W  is optimal solution of the problem 
(11), providing the minimal value vII 00 =  of the 
closed-loop system (8), (23). Hence, the proof is 
completed. ■ 
 
 
4 Spectral Approach to Synthesis 
So than the problem (11) of the optimal control 
synthesis may be reduced to the equivalent standard 
one (15), as it follows from the theorem 1. 

This can be interpreted as the partial case of H2 
optimal synthesis problem, which can be solved by 
using a lot of various methods: for example, such as 
"2-Riccati " approach or LMI technique. However, 
there are serious troubles, remarked in the papers [5-
8], related with the singularity of this problem in the 
context of  H-theory. 

As is shown in the paper [6], overcoming of 
these difficulties can be provided by the 
implementation of the special spectral approach, 
which is presented in detailes in the papers [5-8]. In 
accordance with this approach, the unique solution 
of the problem (15) is determined by the following 
transfer function of the optimal controller (14): 

 ( )
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Hurwitz polynomials ( )sG  and ( )sP1  are the 
results of the factorizations 
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and ( )sR  is the following auxiliary polynomial:  
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Here ( ) ( )
igsi |ds/sdGgG =−=−′ , ig  ( n,i 1= ) are 

the roots of the polynomial ( )sG −  (for simplicity it 
is assumed that all the roots are distinct). Divisions 
to the polynomial )( sG −  in (24) are realized totally 
(without a remainder). Spectral presentation (24) of 
the solution allows formulating the following 
statements: 
Theorem 2: The transfer function ( )sV0  (16) of the 
optimal controller (14) always can be presented as 

 ( ) ( ) ( )sWsBsV 000 ≡ , (27) 

where ( )sB0  is a polynomial of degree n , and 
( ) ( ) ( )sWsWsW 02010 =  is a proper rational 

fraction, i.e. 

 ( ) nsB =0deg , ( ) ( )sWsW 0201 degdeg ≤ .  (28) 

Proof: Let us represent the transfer function (24) as  
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and use notations ( )sNp deg= , ( )sTq deg= , 
( )sPr deg=  to express degrees of the polynomials 

( )sV01 , ( )sV02 . Taking into account that 
( ) nsG =deg  and ( ) 1deg −= nsR , we derive from 

the formula (24): 
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So far as qp <  and nr < , we have 

 { } .,1max,1 nrpqqn −+−=ν−+=µ  (30) 

Let us remark that decreasing of the polynomial 
( )sV01  degree in comparison with (30) is 

impossible; but as for polynomial ( )sV02 , it is 
possible if and only if 1−=+ qrp . Nevertheless, 
this is only a partial situation for the concrete 
value k , and we suppose that this is not the case. 

We can state on the base of (30) that the 
numerator 01V  in (29) always can be presented as a 
product of two polynomials: 
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At the same time, it is true that ( ) 1deg 02 −= qsV  or 
( ) 1deg 02 −>+= qrpsV . Hence, accepting 

( ) ( ) ( )sWsWsW 02010 = , where ( ) ( )sVsW 0202 ≡ , 
we arrive to the statement of theorem. ■ 

Theorem 2 determines a solution of the initial 
problem (7) for the plant (1) and for the controller 
(4). 
Theorem 3: Let us suppose that the optimal transfer 
function  ( )sV0  (16) for the problem (15) has been 
computed, taking into account its presentation (27). 
Then the solution 
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of the problem (7) is determined by the transfer 
function ( ) ( )sWsW *

0≡  and, also, by the vector 

( )TT *
y

** bbβ = , where *b  is a solution of the 
linear algebraic system 

 s
*
yss b abbC −= 0 . (33) 

Here the matrix 
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consists of coefficients of the polynomials  
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and the vectors ( ) ( )( )T000120100 bbbb nns −−=b ,  

( )T
0121 aaaa nns −−=a  are determined by the 

coefficients of the polynomials 
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respectively, and n
*
y bb 0= . 

Proof: the controller (4) with the transfer function 
0WW ≡  characterizes a solution of the problem 

(11) for the plant (8) simultaneously with the 
polynomial ( )sB0 , in accordance to the Theorems 1, 
2. Nevertheless, as it was mentioned above, the 
problem (11) is equivalent to the problem (7), i.e. its 
solution is the controller (3) simultaneously with the 
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vector 
( ) 1TT +∈= n

y Ebbβ , satisfying the identity 

 ( ) ( ) ( ) ( )sBbsAssA y 0
1 ≡+− − bAIc . (34) 

Introducing the following notation:  

 ( ) ( ) ( )

( ) ( ) ( )( ) ,21

1

sCsCsC
ssAs

n≡
≡−≡ −AIcC  

let us rewrite the identity (34) as 

( ) ( ) ( )( ) ( ) ( ) yn bsAsBsCsCsC −≡ 021 b . 

By equating of the coefficients for the same degrees 
of s in the last identity, we obtain the equality 

n
*
yy bbb 0==  and also we obtain the linear 

algebraic system (33). Let us remark that a 
condition of the pair { }cA, observability provides a 
relative primality of the polynomials ( ) n,i,sCi 1=  
that guarantees nonsingularity of the matrix sC , i.e. 
there exists the unique solution *bb =  of the system 
(33). ■ 
 
 
5 Algorithm and numerical example 
Spectral approach to mean-squire synthesis, 
presented by the theorems referred above, is the 
base for constructing of a computational algorithm, 
which allows to find a solution of control allocation 
problem. 

Let us accept the matrices A , h , c  of the plant 
(1), weighting coefficient k , and polynomials 
( )sN , ( )sT  as initial data. It is necessary to carry 

out the following computations to solve the problem 
(7). 

1. Compute the polynomials 
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2. Execute factorizations of two polynomials 
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i.e. compute Hurwitz polynomials ( )sG  and ( )sP1 . 
3. Compute the auxiliary polynomial: 
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where ( ) ( )
igsi |ds/sdGgG =−=−′ , ig  ( n,i 1= ) 

are distinct roots of the polynomial ( )sG − . 
4. Construct the auxiliary transfer function 

 ( ) ( ) ( ) ,sVsVsV 02010 =  (37) 
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5. Select any n  roots iξ  of the polynomial 

( )sV01 , take the rest roots ( )n,jj −µ=ζ 1  and 
generate the polynomials 
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Let remark for example that if the value k  is large 
(i.e. controller has to be designed in the economical 
mode of action) then the pair of  complex conjugate 
roots iξ  close to jβ±  must be roots of the 
polynomial ( )sW10  to provide demanded frequency 
properties of the closed-loop connection. 

6. Construct two vectors  
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with the coefficients of two polynomials  
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respectively. Construct the matrix 
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consisting of the coefficients of the polynomials  
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7. Set ny bb 0=  and compute a solution *bb =  
of the linear algebraic system 

 syss b abbC *
0 −= . (39) 

8. Accept the transfer function of the optimal 
controller (3) as ( ) ( ) ( )sBsWsW 0010 = , where 

( ) ( )sVsW 0202 ≡ , the optimal vector *bb = , and the 
optimal value *

yy bb = . 
Let us consider the practical example, 

demonstrating applicability and effectiveness of the 
proposed algorithm. A marine ship, moving on the 
plane with the constant longitudinal speed, can be 
presented by the model (1), having the following 
matrices 
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2

1
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h

h , ( )100=c . (40) 

Vector 3E∈x  consists of the following 
components: drift angle, angular velocity and yaw 
angle. Let a speed of motion is 10=V  m/s: then the 
components of the matrices (40) are: 0936.011 −=a , 

634.012 =a , 0480.021 =a , 717.022 −=a , 
4

1 1051.1 −⋅=h , 00902.02 =h . External disturbance 
( )td  is scalar, presented as random time invariant 

wave process with power spectral 
density ( ) ( ) ( )sSsSsSd −≡ 11 , ( ) ( ) ( )sT/sNsS ≡1 , 
where  

 ( )
( ) .2

,2)(
222

22

β+α+α+=

β+αα=

sssT

DsN d  (41) 

Here 4550.=β  is a mean oscillation frequency, 
β=α 210.  is blurriness of the spectrum, 

and 410521 −⋅= .Dd  is its dispersion. Let us 
consequently execute all the steps of proposed 
algorithm with value 10=k , and receive: 

1. Initial polynomials: 
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2. Results of the factorization of two 
polynomials: 
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3. The auxiliary polynomial: 

 ( ) 000455.000206.000194.0 2 −+−= sssR . 

4. The auxiliary transfer function: 

 ( ) ( ) ( ) ,sVsVsV 02010 =   
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5. The roots of the polynomial ( )sV01  are 
78001 .−=ξ , j.., 4530168032 ±−=ξ , 08504 .−=ξ . 

We use three of them to construct 0B : 
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6. The auxiliary vectors and matrix: 
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7. Solution *bb =  of the system (39) 

 ( )T30602110153 ...* == bb .  

8. Transfer function of the optimal controller 

 ( )
098401260
016601940

0 .s.
.s.sW

+
+

−= , 

with the optimal parameters *bb = , 1* == yy bb . 
Figures 1, 2 represent step and frequency 

responses of the closed-loop system, computed for 
the optimal controller, designed above. 

Figure 3 demonstrates dynamics of the closed-
loop system under the action of the mentioned 
random wave disturbance and additional unit 
impulse function, effecting on the system from the 
750-th to 950-th s. It can be seen that response to 
rectangular impulse can be isolated from the time-
invariant oscillations that allows us to state impulse 
disturbance for detection of wrecks. The noticed 
feature occurs because of the frequency response 
value ( ) 610 .Ay =  at zero frequency significantly 
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surpasses the value ( ) 92.0455.0 =yA  at the central 
frequency of the external disturbance. 

 
Fig. 1. Step response of the closed-loop system. 

 

 
Fig. 2. Frequency response of the closed-loop 

system. 
 

 

 
Fig. 3. Joined response of the closed-loop system to 

the wave and impulse disturbance. 
 
It will be desirable to attempt to increase the 

coefficient ( ) ( )455.0)0( yyrr AAkkk ==  of 
elevation by the choice of the factor k  in the 
functional (2). To realize this attempt, let us 
consider the plots of the functions ( )kAy ,455.0  
(magnitude at the central frequency of the 
spectrum), ( )kkr , and ( )kTp  (peak time of the step 
response), which are presented on the Figure 4.  

These plots demonstrate that increasing of the 
parameter k  results to increasing of the 

coefficient )(λrk , but the peak time )(λpT  
increases too, that is undesirable. In addition, the 
large value of k results to decreasing a degree of 
stability of the closed-loop system. 

 

 
Fig.4. Characteristics of the closed-loop system with 

various parameter k. 
 
 

6 Conclusion 
The main object of this paper is to propose novel 

approach to mean-square problem with allocation of 
the control action for SISO LTI plants. The optimal 
controller is presented in the specific spectral form 
(24). Application of the proposed approach allows 
to construct a simple algorithm of controller 
synthesis, which can be used, for example, for 
motion control system design in the laboratory 
conditions. In addition, it could be applied onboard 
in real-time regime for detection of the situations 
close to wrecking. Applicability and efficiency of 
the proposed designed scheme is illustrated with the 
help of the practical example for the moving plant 
control. The object of the future research is solution 
of the mean-square problem with allocation of the 
control action for MIMO (multi-input and multi- 
output) plants, maybe taking into account control 
delays and robust features. 
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